NKT cells direct monocytes into a DC differentiation pathway

S Hegde, X Chen, JM Keaton… - Journal of Leucocyte …, 2007 - academic.oup.com
S Hegde, X Chen, JM Keaton, F Reddington, GS Besra, JE Gumperz
Journal of Leucocyte Biology, 2007academic.oup.com
Monocytes can differentiate into macrophags or dendritic cells (DCs). The processes that
promote their differentiation along one pathway rather than the other remain unknown. NKT
cells are regulatory T cells that respond functionally to self and foreign antigens presented
by CD1d molecules. Hence, in addition to contributing to antimicrobial responses, they may
carry out autoreactively activated functions when there is no infectious challenge. However,
the immunological consequences of NKT cell autoreactivity remain poorly understood. We …
Abstract
Monocytes can differentiate into macrophags or dendritic cells (DCs). The processes that promote their differentiation along one pathway rather than the other remain unknown. NKT cells are regulatory T cells that respond functionally to self and foreign antigens presented by CD1d molecules. Hence, in addition to contributing to antimicrobial responses, they may carry out autoreactively activated functions when there is no infectious challenge. However, the immunological consequences of NKT cell autoreactivity remain poorly understood. We show here that human NKT cells direct monocytes to differentiate into immature DCs. The ability to induce monocyte differentiation was CD1d-dependent and appeared specific to NKT cells. Addition of exogenous antigens or costimulation from IL-2 was not required but could enhance the effect. DC differentiation was a result of NKT cell secretion of GM-CSF and IL-13, cytokines that were produced by the NKT cells upon autoreactive activation by monocytes. NKT cells within PBMC samples produced GM-CSF and IL-13 upon exposure to autologous monocytes directly ex vivo, providing evidence that such NKT cell-autoreactive responses can occur in vivo. These results show that when NKT cells are activated by autologous monocytes, they are capable of providing factors that specifically direct monocyte differentiation into immature DCs. Thus, autoreactively activated NKT cells may contribute to the maintenance of the immature DC population, and microbial infection or inflammatory conditions that activate NKT cells further could stimulate them to promote an increased rate of DC differentiation.
Oxford University Press