Suppression of food intake by Glp1r/Lepr-coexpressing neurons prevents obesity in mouse models

AC Rupp, AJ Tomlinson, AH Affinati… - The Journal of …, 2023 - Am Soc Clin Investig
AC Rupp, AJ Tomlinson, AH Affinati, WT Yacawych, AM Duensing, C True, SR Lindsley…
The Journal of clinical investigation, 2023Am Soc Clin Investig
The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control
energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb
neurons plays key roles in the restraint of food intake and body weight by leptin. To identify
markers for candidate populations of LepRb neurons in an unbiased manner, we performed
single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several
previously unrecognized populations of hypothalamic LepRb neurons. Many of these …
The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.
The Journal of Clinical Investigation